• (57) 601 215 3714
  • Esta dirección de correo electrónico está protegida contra spambots. Necesita activar JavaScript para visualizarla.

 I. Antecedentes de infección por SARS-CoV-2/COVID-19

Referencias

  1. Kuljić-Kapulica N, Budisin A. Coronaviruses. Srp Arh Celok Lek. 1992;120(7– 8):215–8.
  2. Regoes RR, Hamblin S, Tanaka MM. Viral mutation rates: Modelling the roles of within-host viral dynamics and the trade-off between replication fidelity and speed. Proc R Soc B Biol Sci. 2013;280(1750).
  3. Lancaster KZ, Pfeiffer JK. Viral population dynamics and virulence thresholds. Vol. 15, Current Opinion in Microbiology. 2012. p. 525–30.
  4. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: Patterns and determinants. Vol. 9, Nature Reviews Genetics. 2008. p. 267–76.
  5. Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015 Apr;202:120–34.
  6. Wang C, Forst C V., Chou TW, Geber A, Wang M, Hamou W, y colaboradores. Cell-to-cell variation in defective virus expression and effects on host responses during influenza virus infection. MBio. 2020 Jan;11(1).
  7. Biswas N, Majumder P. Analysis of RNA sequences of 3636 SARS-CoV-2 collected from 55 countries reveals selective sweep of one virus type. Indian J Med Res. 2020 May;151(5):450–8.
  8. Algunos aspectos básicos de evolución de virus ARN: importancia médica.
  9. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, y colaboradores. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567–71.
  10. Khan MI, Khan ZA, Baig MH, Ahmad I, Farouk A-E, Song YG, y colaboradores. Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight. Ashraf GM, editor. PLoS One. 2020 Sep;15(9):e0238344.
  11. Shi J, Perryman JM, Yang X, Liu X, Musser DM, Boehr AK, y colaboradores. Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics. Biochemistry. 2019 Sep;58(36):3735–43.
  12. Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. Vol. 99, Journal of General Virology. Microbiology Society; 2018. p. 1345–56.
  13. Badua CLDC, Baldo KAT, Medina PMB. Genomic and proteomic mutation landscapes of SARS‐CoV‐2. J Med Virol. 2020 Oct;jmv.26548.
  14. Bordería A V., Rozen-Gagnon K, Vignuzzi M. Fidelity variants and RNA quasispecies. In: Current Topics in Microbiology and Immunology. Springer Verlag; 2016. p. 303–22.
  15. Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F, y colaboradores. SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility. bioRxiv Prepr Serv Biol. 2020;
  16. Wong YC, Lau SY, Wang To KK, Mok BWY, Li X, Wang P, y colaboradores. Natural transmission of bat-like SARS-CoV-2PRRA variants in COVID-19 patients. Clin Infect Dis. 2020;
  17. Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O’Toole A, y colaboradores. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell. 2021;184(1):64-75.e11.
  18. WHO | SARS-CoV-2 Variants. WHO. 2021;
  19. Burki T. Understanding variants of SARS-CoV-2. Lancet [Internet]. 2021 Feb 6 [cited 2021 Mar 16];397(10273):462. Available from: www.thelancet.com
  20. Castillo AE, Parra B, Tapia P, Lagos J, Arata L, Acevedo A, y colaboradores. Geographical Distribution of Genetic Variants and Lineages of SARS-CoV-2 in Chile. Front public Heal. 2020;8:562615.
  21. Bhattacharyya C, Das C, Ghosh A, Singh A, Mukherjee S, Majumder P, y colaboradores. Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of TMPRSS2 and MX1 Genes. 2020;
  22. Jackson CB, Zhang L, Farzan M, Choe H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun. 2020;
  23. Furuyama TN, Antoneli F, Carvalho IMVG, Briones MRS, Janini LMR. Temporal data series of COVID-19 epidemics in the USA, Asia and Europe suggests a selective sweep of SARS-CoV-2 Spike D614G variant. arXiv Prepr arXiv200611609. 2020;
  24. Daniloski Z, Guo X, Sanjana NE. The D614G mutation in SARS-CoV-2 Spike increases transduction of multiple human cell types. bioRxiv Prepr Serv Biol. 2020;
  25. Zhang L, Jackson C, Mou H, Ojha A, Rangarajan E, Izard T, y colaboradores. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv Prepr Serv Biol. 2020;
  26. Alm E, Broberg EK, Connor T, Hodcroft EB, Komissarov AB, Maurer- Stroh S, y colaboradores. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Eurosurveillance. 2020;25(32).
  27. Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, y colaboradores. Structural impact on SARS-CoV-2 spike protein by D614G substitution. bioRxiv Prepr Serv Biol. 2020;
  28. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, y colaboradores. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020 Aug;182(4):812-827.e19.
  29. Koyama T, Platt D, Parida L. Variant analysis of SARS-CoV-2 genomes. Bull World Health Organ. 2020;98(7):495–504.
  30. Koyama T, Weeraratne D, Snowdon JL, Parida L. Emergence of Drift Variants That May Affect COVID-19 Vaccine Development and Antibody Treatment. Pathog (Basel, Switzerland). 2020;9(5).
  31. Tuccori M, Ferraro S, Convertino I, Cappello E, Valdiserra G, Blandizzi C, y colaboradores. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: clinical pipeline. Vol. 12, mAbs. Bellwether Publishing, Ltd.; 2020.
  32. Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R, y colaboradores. D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host Microbe. 2020;
  33. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Vol. 20, The Lancet Infectious Diseases. Lancet Publishing Group; 2020. p. 398–400.
  34. Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon KH 3rd, y colaboradores. SARS-CoV-2 D614G Variant Exhibits Enhanced Replication ex vivo and Earlier Transmission in vivo. bioRxiv Prepr Serv Biol. 2020;
  35. McAuley AJ, Kuiper MJ, Durr PA, Bruce MP, Barr J, Todd S, y colaboradores. Experimental and in silico evidence suggests vaccines are unlikely to be affected by D614G mutation in SARS-CoV-2 spike protein. npj Vaccines. 2020 Dec;5(1):1–5.
  36. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance. 2021 Jan;26(1).
  37. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England | CMMID Repository.
  38. Xie X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA, Cutler M, y colaboradores. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera. bioRxiv. 2021 Jan;2021.01.07.425740.
  39. Nelson G, Buzko O, Patricia S, Niazi K, Rabizadeh S, Soon-Shiong P. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the 1 combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational 2 change greater than N501Y mutant alone, potentially resulting in an e. bioRxiv. 2021 Jan;2021.01.13.426558.
  40. Cony Cavalcanti A, Silva Frauches T, Maria Braga de Mello C, Mello Galliez R, Souza Faffe D, P P Castiñeiras TM, y colaboradores. Article Summary Line: We identified a novel circulating lineage of SARS-CoV-2 in the state of Rio de Janeiro Brazil originated from B.1.1.28 lineage. Running Title: A novel Brazilian SARS-CoV-2 lineage Title: Genomic characterization of a novel SARS-C. medRxiv. 2020 Dec;2020.12.23.20248598.
  41. Cavaleri M, Enzmann H, Straus S, Cooke E. The European Medicines Agency’s EU conditional marketing authorisations for COVID-19 vaccines. Lancet. 2021 Jan;0(0).
  42. Muik A, Wallisch A-K, Sänger B, Swanson KA, Mühl J, Chen W, y colaboradores. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. bioRxiv. 2021 Jan;2021.01.18.426984.
  43. Gebauer M. Coronavirus: Südafrikanische Virus-Mutation auch in Deutschland nachgewiesen. Der Spiegel.
  44. First case of “more contagious” coronavirus strain detected in Australia. 9 News. 2020 Dec;
  45. Greaney AJ, Loes AN, Crawford KH, Starr TN, Malone KD, Chu HY, y colaboradores. Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies. bioRxiv. 2021 Jan;2020.12.31.425021.
  46. Taiwan reports first case of mutant South African Covid strain. Taiwan News. 2021 Jan;
  47. Graham BS, Corbett KS. Prototype pathogen approach for pandemic preparedness: World on fire. Vol. 130, Journal of Clinical Investigation. American Society for Clinical Investigation; 2020. p. 3348–9.
  48. Ny variant av viruset fra Sør-Afrika påvist hos reisende til Norge. fhi.no.
  49. Knapton S. South African variant may evade vaccines and testing, warn scientists. 2021 Jan;
  50. Liu Z, VanBlargan LA, Bloyet L-M, Rothlauf PW, Chen RE, Stumpf S, y colaboradores. Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that 1 attenuate monoclonal and serum antibody neutralization 2 3. bioRxiv. 2021 Jan;2020.11.06.372037.
  51. Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE, y colaboradores. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv. 2021 Jan;2021.01.25.427948.
  52. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Finkin S, Schaefer-Babajew D, y colaboradores. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants 2 3. bioRxiv. 2021 Jan;2021.01.15.426911.
  53. Johnson & Johnson COVID-19 Vaccine Authorized by U.S. FDA For Emergency Use | Johnson & Johnson [Internet]. [cited 2021 Mar 16]. Available from: https://www.jnj.com/johnson-johnson-covid-19-vaccine-authorized-by-u-s-fda-for-emergency-usefirst-single-shot-vaccine-in-fight-against-global-pandemic
  54. Novavax COVID-19 Vaccine Demonstrates 89.3% Efficacy in UK Phase 3 Trial | Novavax Inc. - IR Site [Internet]. [cited 2021 Mar 16]. Available from: https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3
  55. Oxford/AstraZeneca COVID shot less effective against South African variant: study | Reuters [Internet]. [cited 2021 Mar 16]. Available from: https://www.reuters.com/article/us-health-coronavirus-astrazeneca-varian/oxford-astrazeneca-covid-shot-less-effective-against-south-african-variant-study-idUSKBN2A60SH
  56. Covid: South Africa halts AstraZeneca vaccine rollout over new variant - BBC News [Internet]. [cited 2021 Mar 16]. Available from: https://www. bbc.com/news/world-africa-55975052
  57. Brief report: New Variant Strain of SARS-CoV-2 Identified in Travelers from Brazil. Japan: NIID (National Institute of Infectious Diseases); 2021.
  58. Spike E484K mutation in the first SARS-CoV-2 reinfection case confirmed in Brazil, 2020 - SARS-CoV-2 coronavirus / nCoV-2019 Genomic Epidemiology - Virological.
  59. Faria NR, Mellan TA, Whittaker C, Claro IM, Candido D da S, Mishra S, y colaboradores. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv Prepr Serv Heal Sci [Internet]. 2021 Mar 3 [cited 2021 Mar 16];2021.02.26.21252554. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/33688664
  60. Deng X, Gu W, Federman S, du Plessis L, Pybus OG, Faria NR, y colaboradores. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science. 2020;369(6503):582–7.
  61. Garcia-Beltran WF, Lam EC, Denis KS, Nitido AD, Garcia ZH, Hauser BM, y colaboradores. Circulating SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. medRxiv [Internet]. 2021 Feb 18 [cited 2021 Mar 16];2021.02.14.21251704. Available from: https://doi. org/10.1101/2021.02.14.21251704
  62. de Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Toledo-Teixeira DA de, Parise PL, y colaboradores. Levels of SARS-CoV-2 Lineage P.1 Neutralization by Antibodies Elicited after Natural Infection and Vaccination. SSRN Electron J [Internet]. 2021 [cited 2021 Mar 16]; Available from: https://www.ssrn.com/abstract=3793486
  63. Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 2021 Mar 9;372:n579. doi: 10.1136/bmj.n579
  64. Dejnirattisai W, Zhou D, Supasa P, Liu Ch, Mentzer A, Ginn H, et al. Antibody evasion by the Brazilian P.1 strain of SARS-CoV-2. Preprint disponible en: doi: https://doi.org/10.1101/2021.03.12.435194

© 2024 Your Company. All Rights Reserved.